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A theoretical study is made of the structure of a steady planar deflagration down- 
stream of a specific origin location from which a compressible reactive gas flow 
emanates. The chemistry is modelled by a high-activation-energy Arrhenius reaction- 
rate law without the introduction of an ignition temperature. Chemically derived heat 
addition is significant relative to the initial thermal energy of the flow. Perturbation 
methods, based on the limit of high activation energy, are used to construct solu- 
tions for sub- and supersonic values of the Mach number M at the origin. With the 
exception of a thin layer adjacent to the origin in which very small changes occur, 
the structure of the deflagration is determined by a fundamental balance of convec- 
tion, reaction and compressibility effects. Transport processes have an insignificant 
effect on the energetics of the flow. The upstream portion of the deflagration 
is dominated by an ignition event reminiscent of the induction period of an adiabatic 
thermal explosion. Subsequently in the neighbourhood of a well-defined ignition delay 
(or explosion) location a very rapid reaction takes place with order-unity changes in 
all the dependent variables. Compressibility effects are shown to be the source of basic 
limitations on the maximum temperature rise permitted in a flow with a particular 
value of M. Chapman-Jouguet deflagrations are found to appear when the chemical 
heat addition is maximized for a given M. Subsonic combustion is shown to exist for 
fairly general initial conditions at the origin. In contrast, a purely supersonic reaction 
is found to be possible only for specifically defined values of the initial strain rate 
and temperature gradient which would be difficult to control in the experimental 
environment. 

1. Introduction 
The structure of an ordinary, steady planar, premixed laminar flame is determined 

by an interaction between chemical heat release, radical generation and transport- 
property effects. Conduction and mass diffusion limit the propagation speed to values 
less than 1 m/s. Faster flames can be achieved by overcoming the limitations of 
molecular-transport effects. For example, turbulent flame speeds of 10 m/s are 
possible because velocity and scalar fluctuations enhance the rate at which hot 
reacting material advances into unburned gas ahead. Even faster combustion waves 
can be produced if precursor mixing is avoided entirely. The reaction zone in a 
standing-detonation-wave experiment (Nicholls 1963) propagates at a speed charac- 
terized by . lo2 m/s. High temperature behind the normal shock reduces the 
chemical timescale sufficiently to permit the wave to propagate as a convecting 
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chain-branching thermal reaction. Neither molecular nor Reynolds-transport 
mechanisms are required. 

Williams (1965) and Buckmaster & Ludford (1982) describe classical and contem- 
porary efforts to model a steady, molecular-transport-dominated flame that propag- 
ates at a Mach number characterized by M = O( Both flameholder and doubly 
infinite models are discussed. Recently Clarke (1983a) generalized the former to 
include larger combustion wave speeds. He demonstrated that the physical mechanism 
controlling the propagation of the vigorous combustion zone into the unburned 
mixture changes from molecular transport to convecting chemical reaction as the 
wave speed increases from M = O( to A5 = O( lop2). Here it is recognized that 
the wave speed is equal to the prescribed speed at which reactive material is emitted 
from the origin. 

In  the present work we consider the structure and physical properties of a steady, 
planar, compressible combustion wave downstream of a finite origin (flameholder) 
when the specified wave speed is characterized by M = O( 1) .  We find that important 
changes in the structural properties of the wave occur with variation in speed and 
that there is a unique relationship between speed and the gradients at the origin. 

Mathematical models for transport-dominated steady planar flames fall into two 
general categories. The first, exemplified by the study by Bush & Fendell (1970), treats 
the flame as being embedded in a doubly infinite space. In  order to prevent significant 
consumption of reactants in the semi-infinite region upstream of the reaction zone, 
the Arrhenius kinetic law is altered so that a zero reaction rate is maintained until 
the gases reach a specified ignition temperature. As a result, the flame is a transitional 
structure between upstream and downstream equilibrium states where spatial 
gradients and chemical rates vanish identically. Only one propagation speed is 
compatible with a smooth transition from one equilibrium state (zero gradients) to 
the next. In  contrast the propagation speed can be specified for the burner-attached 
flame model devised by Hirschfelder & Curtiss (1  949) and described, for example, by 
Carrier, Fendell & Bush (1978), Clarke & McIntosh (1980) and by Buckmaster & 
Ludford (1982). In this case the reactive mixture emanates at a prescribed speed from 
an origin which is not an equilibrium point. Gradients of temperature, concentration 
and speed at  the origin adjust to the speed so that a steady-state flame exists 
downstream of the origin. The overall structure varies with flow rate. There is a 
well-defined range of propagation speeds, for which transport-property-dominated 
flames exist. At a sufficiently large critical speed, flame separation occurs. The entire 
transport-dominated flame is located a t  a distance from the origin which is large 
compared with the total flame thickness itself (Buckmaster & Ludford 1982, p. 29). 
Between the origin and the flame the physical processes are dominated by a balance 
of weak reaction and convection and the gradients are small but finite (Clarke 1983~).  
The subsequent flame is described precisely by the classical doubly infinite model. 
There is a smooth transition, represented mathematically by formal matching 
between the upstream small-gradient region and the inert part of the flame itself. In  
this context, one can recognize that the eigenvalue flame speed, associated with the 
doubly infinite model, is equal to the critical speed at the origin required to induce 
separation of an attached flame! 

That there is no a priori reason to limit inlet speeds in a steady one-dimensional 
flow can now be appreciated from the work (Clarke 1983a,b) that shows how the 
transported-dominated structure gives way first to convection-reaction balances and 
then to the intervention of compressibility. The stability of these transitional and 
fast flames must be investigated in due course, but for the present our preoccupation 
is with the establishing of basic structures. 
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The doubly infinite space model has also been used to describe flames that 
propagate at higher speeds than those permitted by classical theory. For example, 
Kapila, Matkowsky & van Harten (1983) describe a high-activation-energy 
compressible-flow model in which the propagation Mach number Ad = O(1) and the 
heat addition from reaction is vanishingly small relative to the internal energy of the 
unburned gases. An ignition temperature, thought of as a gas-mixture property, is 
defined to ensure that the unburned mixture is inert until conduction preheating 
raises the mixture temperature to the ignition value. The propagation speed M, a 
function of the ignition temperature, is determined uniquely by the single transitional 
solution that is compatible with the initial and final equilibrium states. When 
Ad = O(1),  the ignition temperature must be exceedingly close to the unburned gas 
temperature far upstream of the reaction zone. It is not known if the ignition 
temperature can be identified as a true material property, independent of an 
experimental apparatus. 

The Kapila et al. model shows that the high-speed flame results from a physical 
balance of fluid convection, chemical heat release and compressibility effects. 
Transport-property effects are essentially negligible. In contrast, Stewart & Ludford 
(1983) have developed a doubly infinite space model for a high-speed reaction zone 
in which the lengthscale of the entire flame is a modest multiple of the mean free path, 
and heat release occurs in a thinner, embedded reaction zone dominated by transport 
effects. The reaction zone is located where the temperature is close to an ignition 
temperature, which is thought of as a material property of the unburned gas mixture. 
The flame speed is a unique function of the ignition temperature independent of the 
detailed reaction process. Implicit in this model is the requirement that the 
characteristic reaction time is much shorter than the average intermolecular collision 
time, a condition we believe is difficult to justify on kinetic grounds. As a result, the 
structural features of this model differ significantly from those of Kapila et al. (1983). 
In particular the extremely short region of active chemical heat release is to be 
contrasted with an extended zone of compressible reactive flow in the latter work. 

High-speed flame structure models are found in early descriptions of one-dimensional 
idealized detonation waves (Fickett & Davis 1979). For example Duff (1978) describes 
the structure of a reaction zone (flame), free of transport-property effects and down- 
stream of a shock wave, to show how chain-branching effects cause an induction 
delay time. Hirschfelder & Curtiss (1958), Linder, Curtiss & Hirschfelder (1958) and 
Curtiss, Hirschfelder & Barnett (1959) employ the complete reactive Navier-Stokes 
equations to describe the details of the shock transition as well as the reaction process. 
In  the first of these papers the reaction zone is merged with the shock because it is 
assumed, arbitrarily, that the characteristic reaction time is short compared with the 
typical molecular collision time. This result, based of course on a physically 
implausible assumption, led to a considerable debate in the literature about the 
importance of transport-property effects in the reaction zone of an idealized 
detonation wave. Later Wood & Salsburg (1960) and then Adamson (1960), Wood 
(1961), Koumoutses & Kovitz (1963) and Bowen (1967) showed quite clearly that, 
for more realistic values of the reaction time, the classical ZND detonation model 
(see e.g. Williams 1965; for a contemporary application Tarver 1982) composed of 
an inert shock followed by a reaction zone free of transport effects, was conceptually 
correct. Perturbation methods were employed in the last four papers to construct 
solution profiles when the ratio of the collision time to the reaction time is small. 
Explicit high-activation-energy asymptotics were used by Bush & Fendell (197 1)  to 
resolve the structure of a ChapmanJouguet detonation. Transport effects are 
confined to the inert shock wave. In contrast, Lu & Ludford (1982) describe a model 
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of an idealized detonation wave in which most of the heat release occurs in a thin 
region dominated by conduction and diffusion. This predecessor to the Stewart & 
Ludford (1983) work is based also on a reaction time short in comparison with the 
mean interval between collisions. It should be noted that the idealized detonation-wave 
model, composed of a shock followed by a reaction zone, is unstable in both one and 
three dimensions (Erpenbeck 1962a, 1963,1964, 1967, 1970). Since a shock alone in 
a perfect gas is known to be stable (Erpenbeck 19623), the instability of the composite 
structure must result from an interaction between the shock and disturbances in the 
exothermic reaction zone itself. The stability of a high-speed reaction zone by itself 
has not been examined. 

Higher-speed flames have also been considered in the context of a flameholder 
model. Clarke (1983~)  has described the alteration in structure caused by an increase 
in the magnitude of the effective propagation speed lam. He shows that the transport- 
dominated structure at A4 = 0(10-3) gives way to a convected-reaction structure 
when O(lO-z) < M 6 1. In  the latter case each reactive gas particle undergoes an 
ignition process in the sense of a Semenov-adiabatic thermal explosion (Semenov 
1928), which has been discussed in contemporary terms by Kassoy (1975). Gradients 
at the origin are exponentially small relative to the high activation-energy parameter. 
This very slight non-equilibrium condition is enough to allow for a wide range of mass- 
flow rates and hence propagation speeds. It is essential to recognize that Clarke’s 
(1983~)  model is valid only for A4 6 1, so that compressibility effects are ignored. 

Clarke (19833) also uses a flameholder configuration to describe the general 
properties of both sub- and supersonic steady, one-dimensional, compressible reactive 
flows for a gas with simplified thermodynamic properties and A5 = O( 1).  An emphasis 
is placed on developing a general understanding of the interaction between gas- 
dynamics, including compressibility, and distributed heat addition due to chemical 
reaction rather than on calculating the actual reaction-zone structure. (The present 
paper concentrates specifically on elucidation of these matters.) High-speed reaction- 
zone propagation is shown to be characterized by convectivcxeaction effects. Flame 
sheets, dominated by transport effects, cannot exist because the flow residence time 
is too short for diffusive effects to smooth out the consequence of chemical reaction. 
However, transport properties do play a major role in shock transitions downstream 
of a supersonic flameholder. Shocks are essentially inert because the characteristic 
chemical reaction time is long relative to the flow passage time through the shock 
interior. In  molecular terms there is insufficient time for reactive collisions to occur. 

In  the present work we again model the structure of a steady planar deflagration 
downstream of a specific origin from which a compressible reactive gas flow 
emanates. One immediate advantage of this formulation is that the reaction process 
can develop from any chosen initial temperature rather than at  an abstractly defined 
ignition value. The chemical reaction-rate law is of the classical Arrhenius form and 
includes a large activation energy. At the origin, the gradients and the chemical 
Reaction rate are exponentially small with respect to the large activation energy. This 
is compatible with the experimentally required condition that the thermal induction 
time of the reactive gas in the hypothetical apparatus upstream of the origin be very 
long compared with the residence time there and with the important chemical scales 
in the deflagration. If this condition was not met the experimental observation would 
be of a time-dependent thermal explosion within the apparatus, rather than a steady 
deflagration downstream of the origin. The finite gradients at  the origin, although 
exceedingly small, permit the degree of freedom necessary to specify the mass-flow 
rates. In  order to model realistic systems the chemical-heat addition is considered 
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to be significant relative to the initial enthalpy of the reactive gas. This should be 
contrasted with the small-heat-addition assumption of Kapila et al. (1983). 

Solution development is by asymptotic expansions based on the high-activation- 
energy limit. The results obtained are valid for a perfect-gas mixture with fairly 
general thermodynamic properties. No special assumptions are made about the value 
of the Prandtl and Lewis numbers. 

When M2 is of order unity and less than l/y, where y is the constant ratio of specific 
heats, the reaction is initiated in a region where transport effects are important. Its 
characteristic dimension is a modest multiple of the mean free path, typically lop5 cm 
for these high-speed flows. Deviations from the initial state are exponentially small 
with respect to the high-activation-energy limit. Subsequently an ignition process, 
resembling a convecting thermal explosion, occurs on a much longer lengthscale,t 
where larger deviations from the initial state exist. The end of the ignition process 
occurs at a well-defined ignition-delay (or explosion) location in the neighbourhood 
of which a very rapid reaction process develops. All of the independent variables 
undergo order-unity changes. This region is characterized by a fundamental coupling 
between reaction and compressibility effects. The latter are the source of basic 
restrictions on the maximum temperature rise in the flow for a specified value of M. 
Sonic speeds downstream of the deflagration (Chapman-Jouguet conditions) are 
found to be associated with a maximized heat addition for a given M. 

For allowable subsonic values of M the downstream combustion process will 
develop from a wide range of initial velocity gradients at the origin. In contrast, when 
M > 1 a purely supersonic combustion process is possible only for very specifically 
defined values of the initial strain rate. For all other values of this gradient a shock 
wave will appear somewhere downstream of the initial location, as described by Clarke 
(1983b). The embedded-shock problem (e.g. the idealized detonation) is not considered 
here. Suffice it to say that the subsonic combustion fields described here can be 
matched to the downstream end of any embedded shock as described in the paper 
just referred to. 

2. Mathematical model 
In order to develop a rational description of a planar steady high-speed deflagration 

it is necessary to use the equations describing a compressible, viscous, heat-conducting, 
diffusing, reactive gas mixture. The general equations discussed by Williams (1 965) 
can be simplified to some extent without diminishing the appropriate representation 
of the important physical processes. In  terms of material properties it is assumed that 
the species specific heats and binary diffusion coefficients are equal and dependent 
on the local thermodynamic state. The former condition simplifies the energy 
equation, while the latter permits Ficks law to be derived from the general equation 
for the diffusion velocity. The species molecular weights are assumed equal in order 
to use a perfect-gas equation of state for the mixture. Formally, the chemistry is 
described by the global decomposition reaction A+B. However, an identical reaction 
expression can be derived for a global fuel-oxidizer reaction, F + O,+products, if the 
initial mixture is either fuel-lean or fuel-rich. The reaction rate is described by the 
Arrhenius rate law, which contains an exponential dependence on the negative 
inverse temperature. 

The non-dimensional equations for mass and momentum conservation (integrated 

t The lengthscale here is very sensitive to local temperature values and may range from 
unrealistically large values down to wholly realistic values of the order of a centimetre. 
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once) and for conservation of reactant and energy can be written respectively as 
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$4 = 1,  $(J2fi’--u1) = $i-G-1’ ( l a , b )  

P YPlM 

b!P = 1 i- yIW2$, 

where $, B, cp and 

initial location denoted by the subscript 1, are 

are specified functions of T and p at most. 
The non-dimensional variables, defined with respect to quantities evaluated at an 

The reactant mass concentration is denoted by 9. In (1) the primes denote a spatial 
derivative with respect to the independent variable 2, where 

The reference lengthscale xR is a modest multiple of the mean free molecular path 
when the initial Mach number M (see (4) below) is of order unity. 

The parameters in (1) are defined by 

where R is the gas constant and E is the global activation energy for the reaction 
considered. The initial Lewis, Prandtl and Mach numbers are given by E,  P and M 
respectively. The quantity AH is the heat released in the complete consumption of 
a unit mass of reactant, while u1 represents the initial value of the strain rate. Finally 
the quantity denoted by B in (1  c,d) represents the preexponential factor in the 
Arrhenius rate law. 

It should be noted that ( l a , b )  represent integrated forms of the conservation of 
mass and momentum considered with respect to the initial location. 

A steady planar reaction zone is assumed to exist downstream of a delivery system 
located at  2 = 0. The initial conditions are given by 

p = P = . i i = l ,  $ = Q  a t i = Q ;  ( 5 )  

together with specification of the reactant’s fractional mass flux. This implies that 
the values of the parameters in (4), with the notable exception of ul, are known. In  
particular the initial Mach number M is to be treated as a finite quantity which may 
be sub- or supersonic. The flameholder is of the Hirschfelder & Curtiss (1949) type, 
and so weak upstream diffusion of product is permitted in this formulation. The 
amount will be calculated in the course of the analysis. 



The structure of a steady dejagration 259 

The boundary conditions are completed formally by specifying the downstream 
pressure, the condition for completion of the reaction process and the approach to 
a final equilibrium state: 

$=$co, g = O ,  ( ) ’ = O  a s f - t m .  (6) 

The last expression implies that the dependent-variable derivatives must approach 
zero far from the initial point. 

The flameholder configuration implied by ( 5 )  and (6) is employed to emulate the 
experimental environment. There, the prudent observer must prevent spontaneous 
ignition of the reactive mixture prior to the exit of the delivery system by making 
the thermal ignition time of the mixture much larger than the system residence time. 
This can be accomplished by specifying a high mass-flow rate, by choosing a delivery 
system with a small lengthscale, by operating a t  a low system temperature, or a 
suitable combination of the three effects. For example a cold reactive mixture could 
be passed through a supersonic nozzle and then be compressed and heated by a normal 
exit shock. The shock strength would be chosen to provide the nearly instantaneous 
temperature boost required to ensure that a significant reaction occurs subsequent 
to the shock. The state just downstream of the shock location would provide the 
initial conditions in ( 5 )  in the case of M < 1 .  The standing-detonation-wave 
experiments of Nicholls (1963) provide an example of this type of experiment. 
Alternatively one could mix cold reactants and pass them very quickly through a 
cooled flameholder such that the exit temperature was sufficiently high to ensure a 
subsequent reaction process. Then the exit conditions provide the initial state in (5). 

The flameholder model used here does not require the definition of an arbitrary 
ignition temperature used often in infinite-field flame models to initiate the reaction 
at  a specified finite location (Bush & Fendell 1970). In the same sense the classical 
cold-wall boundary difficulty (Williams 1965) is avoided. 

The two-point boundary-value problem defined by ( l ) ,  ( 5 )  and (6) is awkward for 
the development of solution trajectories for each variable from the initial to the final 
state. In this sense it is advantageous to convert the problem to an initial-value type 
by establishing a relationship between and the initial strain rate u,. If (1 c , d )  are 
integrated between the initial and final states and ( la ,e)  are evaluated for f-. 00 it 
then follows that 

-$ul =$m+t2m- l ,  ( 7 a )  

- 1  
P 

Cp dp = -p(O) + h - ( y -  1) M2 (a(&& - 1) +ful), ( 7 c )  

There are four independent equations in (7 )  for the seven unknowns C,, pm, d,, $ ( O ) ,  
g ’ ( O ) ,  p ( 0 )  and the integral in ( 7 b ) .  If the structural solution can be shown to yield 
information about the derivatives $’ (O) ,  p(0) and the value of the integral, then the 
remaining unknowns can be evaluated. This will be validated in $3. It follows that 
a specification of implies u1 and vice versa. It should be noted that (7 b )  is used 
ultimately to calculate $ ( O ) .  

The solution to (1) subject to ( 5 )  and G’(0) = u1 specified, is to be found when the 
initial Mach number is finite (M = O(1)) and the initial Lewis and Prandtl numbers 
are arbitrary but finite. The activation-eneigy parameter B is considered to be very 
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small, with values between 0.0; and 0.05 of physical interest. In contrast with Kapila 
et al. (1983) the non-dimensional heat-addition parameter h = O( l) ,  which will permit 
the kind of heat-addition effects seen in real reactive systems. 

The parameter multiplying the reaction terms in (lc,d) contains the factor p J p l  
proportional to the mean molecular collision interval for the initial state, which is 
of the magnitude s for standard temperature and pressure values. Typically the 
preexponential factor B = O(lOm s-l) for m = O(10) (Bradley 1962). Given that 
y = 0 ( 1 )  and M = 0 ( 1 )  in addition, it is necessary to treat the quantity Bpl / yp l  M2 
&g a number which may be large with respect to the limit e+O. 

The viscous lengthscale xR defined in (3) is of magnitude cm for standard 
conditions. This is in fact the thickness of a moderately strong shock corresponding 
to a mass flux plul commensurate with A5 = 0(1) > 1.  In this regard it should be 
noted that the initial dimensional strain rate, found from (2)-(4), can be written &g 

Cl. 
du Y M 2  - ( O )  = - 
dX PlIP1 

When rrl = 0 ( 1 )  the remaining large parameter gives the characteristic strain in a 
shock. Only if g1 < 0(1) will less severe initial strains be present. 

Solutions to (1) are to be found in the limit E + O  for subsonic initial conditions, 
0 < M < 1, and in the supersonic case M > 1 when the flow is shock-free. In either 
case it is assumed that w1 < 0 ( 1 ) ,  so that a shock may not exist even at the initial 
boundary. The supersonic study is carried out explicitly to show that such flows are 
not likely to be observed. 

Embedded shocks, precluded by the conditions prescribed above in the present 
work, have been considered by Clarke (19836). He shows that behind all such shocks 
the conditions are those of a subsonic flow with a well-defined v1 of a suitably small 
size. Thus the A5 < 1 solutions developed here can be matched onto the appropriate 
downstream solution for the shock (Courant & Priedrichs 1948). Examples of this kind 
of calculation have been given by Bowen (1967), Bush & Fendell (1971) and Kapila 
et al. (1983). 

3. Reaction initiation 
The reaction process is to be initiated in the very thin zone, where 2 = O(1). There, 

in the limit E -+ 0 the reaction terms in (1  c, d) are exponentially small given that the 
parameter B p l / p l M 2  is not too large. Furthermore the absence of a shock means 
that v1 and hence 6' arc very small. As a consequence changes from the initial state 
will be minute. The magnitude of the variation is determined by using the asymptotic 
transformation 

( P ,  g) - i +/?(el { B ( ~ ; E ) ,  - e ( f ;  E ) ) ,  lim /? = o (8) 
€+O 

in (1 c,d) to find equations for the lowest-order approximation to the perturbation 
quantities 6 and 6. These variables will be affected by the weak reaction process only 
if 

This parameter is observed to be the ratio of the initial mean time between molecular 
collisions to the reaction time at when'M = O(1). A more specific limitation must 
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await further solution development. Gasdynamical effects described by the last term 
in (1  d) will be of the same order of magnitude as the reactive term if 

$? - pP(x^: I ? ) ,  ti - 1 +PO(x^;s). (10a,b) 

cr, = pa,, 8, = o'(0) = O(1). (11)  

The latter representation implies that 

It follows from ( l a d )  and the limit E + O  that the lowest-order approximation for 
the perturbation quantities can be described by 

E 
E' = --E"+l, 

P e(0) = oo, 

(12b) 
1 
P 

81 = - f P + + + ( y - l ) M P ,  B(0) = P(0)  = 0, 

P = (8- O)/yM2, (12c) 

$(U-8,) =P+O, U(0)  = 0, (124  

where 8, is treated as a known initial value and oo is a constant. In deriving the 
asymptotic approximation to the exponential terms in (1 c, d) it  is necessary to assert 
that ( P I E )  0 4 O(1). Given /3 in (9), this condition will fail to be true only when 8 is 
quite large. In  the usual sense, the failure of the limitation on the size of 8 will signal 
the non-uniformity of the solution in the 2 region. 

Before proceeding with the development of solutions to (12) i t  is necessary to point 
out the consequences of a larger initial strain rate. When 

o(p) 4 g1 < O(E) 

it can be shown that the gasdynamical term in (1 d )  is larger than the chemical term. 
As a result a basically inert gasdynamical relaxation zone precedes any reaction 
process. The dependent variables spontaneously approach a new near-equilibrium 
state downstream (i.e. Z-. 00). When the gradients become O ( p ( e ) )  the reaction- 
dominated analysis described above can be implemented. The only effect of larger 
g1 values is to displace the weak reaction downstream by a dimensional distance 
O(xR In (al//3)). The appropriate initial conditions for the reaction zone are given by 
the downstream equilibrium solution to the inert problem. It should be noted that 
the upper bound on the magnitude of crl arises from the high activation-energy 
asymptotics in which temperature perturbations from an initial state will be at most 
O(s) .  Values -in the range O(E)  < cr, < 0(1) imply shock-like processes in which 0 ( 1 )  
changes in temperature occur. 

Equations (12) can be used to find 

a f P + b & - ( 1 - M 2 ) 8 = - - ) ) 2 . - n ~ ,  8(0) = 0,) 

a = -  !YMz b =  (1-yM2)P-$M2, 
P '  

where the presence of 81(0) results from using the integral of (12 b) relative to the initial 
point. 
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3.1. Subsonic results 
In the case of a subsonic entry condition M < 1 the general solution can be written 
as 

where A: ( - A : )  corresponds to the positive (negative) root of the characteristic 
equation of the homogeneous operator in (13), 

The exponential growth of 8 in (14) must be suppressed because there is no physical 
mechanism other than the weak chemistry (represented by the nonhomogeneous 
terms in (13)) that can produce a temperature rise. If, in addition, the initial condition 
in (13) is satisfied then the solution can be written as 

8 =  Q(l-e-Afx^)+Rf. (16) 

d’(0) = QA:+R. (17) 

At 2 = 0 the initial gradient of the temperature perturbation can be written as 

Given the definitions of these quantities in (13)-( 15), i t  is clear that (17) provides an 
explicit value of & ( O )  as a function of Ad, P, 7 ,  h and 8,. It follows that, once u, is 
specified, the heat flux at the origin can be calculated explicitly from p(0) - @’(O) 
as obtained from (8). It is then clear that the conductive heat loss to the delivery 
system is O(p) for M2 = O( 1 )  in this subsonic case. 

The fuel-consumption equation (12a) has the elementary solution E = f ,  which is 
obtained by suppressing the exponentially growing homogeneous solution. The result 
is interpreted to mean that fuel is consumed only by the weak reaction represented 
by the nonhomogeneous term in (12a). At the initial point the reactant gradient found 
from (8), namely $’(O) - - p ( e ) ,  is of course small. 

The known values of p(0) and $’(O) can now be used in (7a,c,d) so that the-system 
provides three equations for ul, pm, tim in the case when is prescribed. This then 
verifies the em, a,)-relationship implied previously. 

The integrated form of (12b) can be used to find the pressure perturbation 

(18) 
1 
P 

(7-1) Ad2P = 8--(&-81(0))-hf ,  

while the speed variation is obtained from (12c) in the form 

0 = 8-yMZP. (19) 

3.2. Supersonic results 
When M > 1 both roots in (15) are positive. The general solution, analogous to (14), 
then contains two exponentially growing terms. If the flow is to be purely supersonic 
there is no mechanism (e.g. a nearby downstream shock) to support these rapid 
variations. Thus the exponential growth must be suppressed, so that the solution 
is simply 

8 = R ~ + Q .  (20) 
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A fuller discussion of the role of exponential terms is given by Clarke (1983 b). If the 
initial condition &O) = 0 is satisfied, then & = 0, which, after suitable manipulation 
of the &-definition in (la), yields 

6, = - h / ( M 2 - l ) .  (21) 

This result shows that a supersonic flow with heat addition (h .t. 0) cannot develop 
from an equilibrium initial state (6, = 0). The flow will remain purely supersonic in 
the 2 = O( 1) region only if the initial strain is controlled very precisely. Any deviation 
from this special value will lead to the presence of a shock just downstream of the 
initial point, as discussed in detail by Clarke (19833). It should be emphasized that 
the result given in (21) represents only a lowest-order approximation. If a higher-order 
theory were developed, small corrections could be calculated. The initial conditions 
required for a supersonic reaction process would then be even more stringent. All of 
this suggests that planar purely supersonic combustion cannot be observed experi- 
mentally, because of the impossibility of controlling the initial strain rate or 
pressure difference p ,  -p ,  adequately. 

One can use (8) and (20) to show that the initial heat flux is p(0) - PA. The pressure 
and speed perturbations are given by (18) and (19). 

3.3. Asymptotic behaviour and eingularities 
The reaction-initiation solutions contain a simple singularity in the limit g-+ co . From 
(8), (lo), (16) and (18)-(20) it  can be shown that to lowest order 

First it should be noted that given the definition of R in (14) the temperature will 
increase if 0 < M2 < l /y  or M2 > 1 but will decline for l / y  < M2 < 1. In  the latter 
case the decline is proportional to  the heat-addition parameter h, implying that the 
flow converts energy added to the system to kinetic energy in an efficient manner. 

The results for the speed and pressure show that in a subsonic (supersonic) flow 
the pressure drops (increases) as the speed increases (decreases). These results are what 
one would expect for one-dimensional flow with heat addition (Shapiro 1954). 

The approximations inherent in the derivation of (12) fail when 

( P / E )  4 - (PIE) x^ = O(1).  

When = O(e//3) it follows that 6 - 1 -O(e) ,  i? - 1 + O ( B ) ,  @ = O(E)  and .ii - 1 + O ( E ) .  
These estimates are used to determine the scaling in the next region downstream. 

It should be noted that O(R)  terms in (22bd) contain the factor &, defined in 
(14), which depends explicitly on 6,. This means that when the non-uniformity occurs 
(Pjf = O ( s ) ) ,  because heat addition h begins to dominate the process, the influence of 
transport properties remains O(P). As a result the chemical effects begin to decouple 
from the transport effects at the end of the reaction-initiation period. This decoupling 
is a characteristic feature of high-speed flows with chemical-energy release (Clarke 
1983 a, b). 
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It is interesting to  note that the residence time of a fluid particle in the initiation 
zone is given by xJul = ,ul/ypl M2. When the initial Mach number is not too large, 
the residence time may be considerably larger than the mean interval between 
collisions, given by pl /p l .  This condition is necessary in any quantitatively accurate 
continuum description of a gasdynamic process. 

4. Ignition process 
I n  $ 3  the reaction initiation was characterized by an inherent balance of convection, 

conduction and compressibility effects, with heat addition from a relatively weak 
reaction. Except for y-' < M2 < 1 the cumulative effect of heat addition over the 
2-region is a rise in gas temperature sufficient to enhance the reaction rate relative 
to  energy transport by conduction. This suggests that  in the subsequent region 
account must be taken of a rather more substantial reaction process. 

One may infer from the discussion in $3.3 that the ignition-zone variables can be 
written as 

(23a)  

1; - EP, (23b)  

2 = (€/PI x ( 2 3 4  

and the parameter E .  The lowest-order matching conditions constructed from (8), (10) 

(24)  
and (23)  are 8 = E = U = Y = O  asX+O. 

If (23) is used in (1) the lowest-order approximation in the limit E+O, 

u=-F, u=e-y&pp,  (25a,b)  
be written as 

~ ' = e * ,  i9 '=hes+(y-1)M2P,  (25 c ,  d ,  ) 

(P ,& a) - 1 + E ( B ,  --c, V ) ,  

where the perturbation quantities are functions of the stretched coordinate 

- - -  

fixed, can 

where primes denote derivatives with respect to  X. Equations (25a,  c , d ) ,  representing 
conservation of momentum, reactant and energy respectively, are observed to be 
independent of transport effects. The energy equation exhibits an explicit balance 
of convection, reaction and compressibility. Equations (25a ,  b, d )  can be rearranged 
to  show that 

The temperature-perturbation solution, subject to (24) ,  is 

8' = R eo. (26)  

- 1 
8=ln-  

1-RX' 

The remaining solutions then take the form 

- 
= - u. e e -  c = -  p = -  

R '  1 - yM2 

If the pressure gradient is evaluated explicitly from (27)  and (28)  and then used to 
calculate the value of the compressibility term in ( 2 5 d ) ,  i t  can be seen that the latter 
is a heat sink for M < 1 and a heat source for M > 1. This fact helps to explain the 
change in character of the &solution a t  large subsonic values of M as portrayed 
qualitatively in figure 1. When R > 0, corresponding to 0 < M2 < l / y  and Mz > 1, 
the solution approaches a positive infinity a t  a finite location Xi = 1/R. In  contrast 
when l/y < M2 < 1 ,  R < 0, the temperature perturbation decreases monotonically 
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FIGURE I.  Temperature-perturbation variation with downstream distance for three Mach-number 
regimes. 
FIQURE 2. The ignition delay distance hxi aa a function of MZ. 

in the X-region, approaching negative infinity for x+00. This occurs because the 
compressibility heat sink is larger than the reaction-generated heat addition when 
M2 is in the critical regime. In  this sense the combustion process is subcritical for 
l /y  < M2 < 1 and supercritical for other values of M2. 

The singularity in 8 when R > 0 is typical of those found in the induction or ignition 
period of an adiabatic thermal explosion (Kassoy 1975) and has been seen in 
non-classical flame studies (Clarke 1983b; Kapila et al. 1983). In  figure 2 the ignition- 
delay distance hzi is shown as a function of M2 for y = 1.4. In the range of 
0 < M2 < l /y,  Xi increases with M2 (for a fixed h) as the heat-sink effect of 
compressibility grows. When M2 + (l /y) - , hX,+ 00, implying that the ignition 
process is delayed indefinitely. In the supersonic regime the heat-source effect of 
compressibility is very large for M2+ 1 + , which causes hXi + 0. Further increases 
in M2 cause hzi to increase at most to l /y because the heat-source effect becomes 
vanishingly small for large M. It should also be noted that for a given M the value 
of Xi decreases with increasing h, implying that ignition appears closer to the initial 
point when the heat release is larger. 

The dimensional ignition-delay distance 

is O(e)  smaller than the distance travelled by a fluid particle at the initial speed u1 
during the initial characteristic reaction-time interval B-l el/€, given the definition 
of P in (9). Order-of-magnitude estimates for P are given in table 1 for 

pl/pl = O(lO-'O s), e = 0(10-2) and 1O1O s-l < B < lozo s-'. 

Generally 4 O(s)  unless e and B are fairly large, corresponding to very large reaction 
rates. If the typical value xR = 0(10-5 cm) is considered, then a laboratory-size 
ignition-delay distance, say xi 5 lo3 cm, can be calculated from (29) only for a subset 
of /&values in table 1 characterized by O(lO-'O) 5 /3 4 0(10-2), a significant range 
nonetheless. 

In the subsonic, supercritical regime the temperature rise described by (27) is 



266 D. R.  Kassoy and J .  F.  Clarke 

MZ = O( 1) M2 = O( 10-2) 

B ... 10'0 10'6 1020 10'0 1015 1 0 2 0  

6 P B P P P P 
0.02 2 x 10-22 2 x 10-17 2 x 10-12 2 x 10-20 2 x 10-16 2 x 10-10 
0.03 5 x 5 x 5 x 5 x 10-13 5 x 10-8 5 x 10-3 
0.04 1 x lo-" 1 x 10-6 1 x 10-1 1 x 10-9 1 x 10-4 1 x 10' 
0.05 2x10-9 2 x 10-4 2 x  10' 2 x 10-7 2 x 10-2 2 x  103 

TABLE 1.  Order-of-magnitude estimates for the parameter /l as a function of E when Ma = O(1) and 
Ma = O( for three values of the preexponential factor B 

accompanied by a pressure drop and flow acceleration given by (28). In  the analogous 
supersonic flow the pressure rises as the flow is decelerated. The subsonic subcritical 
regime is characterized by a pressure drop and flow acceleration along with the decline 
in temperature. The latter effect leads to a monotonic decrease in the reaction rate. 
In this sense the reaction event, benign in character, must extend over distances which 
are extraordinarily long relative to a laboratory scale. No further consideration will 
be given to this case. 

The non-uniformity developing in (23) due to the singularities in (27) and (28) when 
XR+ 1 - is directly related to those seen in thermal explosion theory. In  particular 
one must now develop a procedure for studying O(1)-variations in the dependent 
variables (p, fj, 12, @) caused in this problem by a combination of significant heat 
addition (h = O(1)) and gasdynamical processes. 

5. Rapid combustion 
The perturbations in the ignition zone, formally O(s),  become very large when X+Xi 

in the sense that E In (1 - RX) = O( 1). This type of non-uniformity is reminiscent of 
that seen so frequently a t  the end of the induction period of a thermal explosion 
(Kassoy 1975). In the region to follow, where it is expected that 0(1) changes in the 
dependent variables will occur, the spatial scaling is defined in terms of a nonlinear 
transformation relative to the rapidly varying temperature 

where Xi and H can be represented formally by limit-process expansions for E + O .  
The previously defined value Xi = 1/R is the lowest-order approximation to the 
former quantity. If (30) is used in (1 d )  the energy equation can be written in the form 

&iP = ;-&{X[$-.H.]-' exp[t(~-;i)]}+h$fj[$-c~.] 

+(y--l)M2{Q~+!$?(12')2[~-~H']1 exp[:(l-$)]}. (31) 

Primes denote derivatives with respect to p. The limiting form of (31) is sensitive 
to conditions placed on the parameter b. The magnitude of the conduction and 
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dissipation terms in (31) (respectively first and fourth on the right-hand side), is 
determined by the properties of the parameter 

where p* 2 T ,  the maximum temperature encountered in the rapid-combustion zone, 
must be found in the course or'analysis. One can use (9) in the second term in (32) 
to show that the latter is nothing more than the ratio of the intermolecular collision 
time to the characteristic reaction time at  the temperature P*. In a physically 
realistic system this ratio must be very small because substantial reaction progress 
requires many molecular collisions. It follows that 

when s -4 1 .  In  the limit s+O, P must be exponentially small, which sets the 
magnitude of the perturbations in the initiation zone. The inequality in (33) implies 
that conduction and dissipation are suppressed in the limiting form of (31) which 
describes energy transport as a balance of convection, heat addition and 
compressibility. 

It is perhaps worth while to recall that the mean molecular-collision time is related 
directly to the flow passage time of a gas through all but very weak shock waves 
(Landau & Lifshitz 1959). In this sense the present study is limited to reactions with 
timescales that are relatively long compared with the shock flow passage time. This 
notion is of significance when the deflagration results are applied to reaction zones 
behind shock waves. In fact Adamson (1960), Wood (1961) and Bowen (1967) invoked 
these conditions, and that in (33), in their analyses of the idealized detonation wave! 
Of course for larger p-values one could consider merged shock-reaction zones, 
particularly for broad weak shocks, although that is not done here. A numerical 
computation for the merged system has been discussed by Hirschfelder & Curtiss 
(1958). 

Matching conditions for the dependent variables can be constructed from (23), (27), 
(28) and (30), in terms of T+ 1 + . These intuitively obvious results are 

The species and momentum equations in (1 ) can be transformed using (30) into 
a form related to that in (31). If the limitation in (33) is applied when s+O, 9 %- O(s) 
and B H  %- O ( H ) ,  then the lowest-order approximate equations 

@ti 

hQ 
H ( P )  = [Op++(y-l)M2(ti2)']-, 

g' = - f .?gH/P,  (35b) 

f .?&=l,  & = 1 - $ ,  f .?P=l+yM2$ (35c,d,e) 

represent conservation of energy, species, mass and momentum and the equation of 
state. Equations (35a,b) can be combined to produce an elementary differential 
equation for 9'. The solution 

&',(,) da-+(y- 1 )  M2(C2- 1) (36) 
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FIQURE 3. Flow speed as a function of temperature. 

FIGURE 4. Pressure difference as a function of temperature. 

FIGURE 5. M2 as a function of temperature. 

satisfies the matching conditions in (34). The algebraic system in (35c-e) can be used 
to  show that 

a = 4yM2/ (  1 - Y M ~ ) ~ .  

Formally (37) and its derivative can be employed in (35a ,b)  to find an explicit 
expression for H ( p ) .  Similarly p^, G,$ and g can be found as functions of p. Finally 
p = ~ ( X ; B )  can be found in implicit form from (30). It should be noted that the 
solution in (37) is multivalued and must be used judiciously to  describe supercritical 
subsonic and supersonic events. 

In the discussion to follow the special case f l P  = 1 is examined in detail. It should 
be clear that the variable-specific-heat problem can be examined with only a minor 
increase in algebraic effort. 

5.1. Subsonic initial conditions 

When 0 < M2 < l/y the variation G(p) in (37) is qualitatively like that in figure 3. 
The branch of (37) corresponding to the upper sign is used to  describe the increase 
in speed from the initial point p = 1 until the critical temperature 

when 6, = (1 +f)/2f. (38b) 

Thercafter the lower-sign branch is used to  describe the further acceleration of the 
flow with declining temperature. The corresponding pressure and local Mach number 
( M 2  = M2G2/p) are given in figures 4 and 5 respectively. I n  the latter i t  should be 
noted that the critical value MZ = l/y. These results show quite specifically that the 
compressibility of the gas prevents the temperature from rising above T,. I n  
figure 6 the critical temperature is given as a function of M when y = 1.4. For 
0.55 5 104 5 1.3 there are very severe limitations on the maximum temperature rise 
in the system rclativc, say, to the adiabatic flame temperature pad = 1 + h when 
h = O(1). For a wide range of M-values < cd for typical values of h. 
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FIGURE 6. Critical temperature as a function of M for y = 1.4. 

M 
0.32 
0.55 
0.7 1 
0.84 
1.05 
1.14 
1.22 
1.34 
1.41 
2.00 
2.45 

p c  

2.32 
1.20 
1.03 
1 .OO 

1.05 
1.09 
1.14 
1.23 
1.29 
1.95 
2.63 

PCJ 

2.26 
1.17 
1 .oo 
0.97 
1.02 
1.06 
1.11 
1.20 
1.25 
1.89 
2.56 

h, 
1.63 
0.31 
0.08 
0.003 

-0.023 
-0.012 

0.007 
0.045 
0.073 
0.422 
0.805 

hCJ 

1.69 
0.34 
0.104 
0.027 

0.002 
0.014 
0.035 
0.074 
0.104 
0.469 
0.868 

TABLE 2. Critical parameter values and Chapman-Jouguet parameter values 

At  the critical point defined by (38) the reactant concentration in (36) can be 
written as 

h@, = h-he,  h, T , -1++(y - l )M2(uE-1)  > 0 ,  M2 < l / y .  (39) 

Typical values of h, are given in table 2.  The critical point concentration @, represents 
the fuel remaining when the system temperature reaches the critical (in fact 
maximum possible) value. When h < h,, @, < 0 which is physically unacceptable. In 
this case y+O on the upper-sign branch of the curves in figures 3-5 for and 
6 < &,. For larger values of the heat-release parameter h > h,, g, > 0, implying that 
y+O on the lower-sign branch in figure 3 where but 4 > 4,. When @-to (36) 
and (37) can be combined to show that the system temperature approaches 

< 

< 

where hc , represents the largest allowable value of the heat-addition paramefer.i 
When h = h,, > h, the corresponding temperature is 

t Actually h,, is influenced by the value of the initial strain rate and rate of heat loss to the holder; 
since both of these quantities are exponentially small they are neglected in (40). 
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0 <Ma < 117 t i  

FIGURE I FIGURE 8 

FIGURE 7. Reactant concentration as a function of temperature: (a) 0 < h < h,; (b )  h = h,; 
(c) h, < h < hcJ; (d )  h = hCJ, 

FIGURE 8. H as a function of T. The dashed line is qualitatively correct for M2 > 1 w well. 

where p,, < c for y > 1, while the Mach number is 

W(pCJ)  = / % f 2 6 ! 2 ( ~ C J ) / g & ~ 1 - - .  (42) 

This means that a Chapman-Jouguet condition is approached in the rapid-combustion 
zone as @-to if h = h,, 7 h,. I n  contrast, when h < h,, the local Mach number will 
be less than unity as g + O .  

Typical results for fuel consumption with temperature variation are given in 
figure 7. When h < h, the upper-sign branch of (36) is used to find curve (a). I n  this 
case 1 < p(# = 0) < c. Curve (b) corresponds to the special case h = h,. More 
significant heat addition, h, < h < h,,, is represented by the curve (c), where the 
critical temperature is attained and @, > 0. Further decline in the fuel concentration 
takes place with a dropping temperature. If h = hcJ the process is described by curve 
(d), which demonstrates that  as the fuel vanishes the local Mach number approaches 
unity from below because the temperature approaches p, J .  The Chapman-Jouguet 
condition is observed to occur for a given value of M when just the right amount 
of heat is generated as all the fuel (at least the lowest approximation thereof) is 
consumed. If h < h,, the final temperature will be somewhere between 1 and $ while 
M 2 <  1. 

Typical values of h,, and T,, are given in table 2 for y = 1.4. Except at rather 
small initial Mach numbers the maximum amount of heat that  can be added to a 
steady-state flow is limited. It is noted from (41) that pcJ = 0.972c when y = 1.4. 
This means that in the case 8, > 0 there will be only a small temperature drop in 
the system subsequent to the maximum value $. I n  contrast, the flow acceleration 
is more substantial because W, = l/y while l / y  < M2 < M2(TcJ) = 1 .  

In  summary then, the subsonic flow is characterized by flow acceleration as the 
fuel is consumed. If h < h, the temperature increases monotonically as well. Should 
the heat addition be sufficiently large, h, < h < h,,, the temperature increases 
to pc and then declines slightly to g(@ = 0). The local Mach number will approach 
unity only when h = hcJ. 

The value of 2)* defined in (32) is found from (40) when h < h,. I n  all other cases 
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the maximum value of p* = T,. It should be noted from table 2 that  when p* is close 
to  unity the /3-limitation in (33b) is not very severe. 

The reduction of the full energy equation (31) to the algebraic formula for H ( p )  
in (35a) is a gratifying by-product of the nonlinear transformation (30). A qualitative 
description of H is given in figure 8 for the subsonic problem. When h < h, (35a), 
(36) and (37) can be used to show that the dashed line describes the function. The 
singularity occurs when @-to prior to  reaching p,. I n  contrast, when h, < h < h,, 
the functional behaviour is given by the solid line. The first singularity is caused by 
(G2)’ = dti2/dp becoming unbounded a t  while g+O. The curve reappears in the 
lower half-plane, reaches a negative maximum and then becomes singular again as 
@-to. When h = h,,, the factor in brackets in (35a) approaches zero as well, but at 
a slower rate than 9 as p-+ p,,. As a result H-t  - co. 

The bracketed factor in (35a) is recognized as the temperature derivative of the 
stagnation temperature 

= JI” C ,  da+;(y- 1) Ad2#. 

When H > 0, % increases with temperature and in fact with 2, given the nature of 
(30). I n  the cases h, < h < h,,, once the critical point is passed, then H < 0, implying 
that decreases with increasing p. However, the temperature is in fact a decreasing 
function of 2 once pc is achieved because the flow continues to  accelerate as the 
temperature drops. Since the temperature movement is negative $ continues to 
increase with p;(C?) < 0. I n  this sense the stagnation temperature increases mono- 
tonically for all possible values of h (cf. Clarke 1983b). 

The approximations used to derive (35) are not valid when sH’(p) = O ( H ) .  This 
non-uniformity will arise when either of the singularity types in figure 8 are 
encountered. These singularities must be explored in detail in order to proceed further 
downstream in the reaction event. 

5.2. Subsonic singularities 

When the singularity generated by vanishing reactant is approached, the terms on 
the right-hand side of (35a) other than 9 have well-defined asymptotes for h < hcJ. 
It follows that H - l /g  and iJ2H - 9’. The derivative 9‘ = O( 1 )  when y+O according 
to  (35b). Then s H  = O ( H )  when fj = O ( E ) .  As a result, when the singularity is 
approached H = O( 1/s) and p - p($ = 0) + O ( e ) ,  as can be ascertained from (36) and 
(40). Similarly @, 6 )  - ($, 6 )  (9 = 0) + O(e) .  

The Chapman-Jouguet case h = h,, is slightly different because, as g+O, g’L0 
as well. A Taylor-series analysis of the singularity can be used to show that H - l/y$ 
and that H - l/g. Then s H =  O ( H )  when 

9 = 0 ( s 2 ) ,  H = 0 ( 1 / e )  and (p,$,6)-(pM,$M,6M) = O ( e ) .  

The fuel concentration near the singularity is noted to be an order of magnitude 
smaller than that for h < h,, . This suggests that a Chapman-Jouguet rapid-reaction 
zone is a maximally efficient fuel consumer. 

The other type of singularity in H ,  near the critical point, is associated with the 
properties of (u2)’ because the other factors have well-defined asymptotes. The 
derivative of (37) can be used to  show that 

lim H - [l -cz(p- 1)]-4, 
T+T, 

while 



272 I ) .  R .  Kassoy and J .  F .  Clarke 

The non-uniformity occurs when sH = O(H), which implies that F - e+O(s)  and 
H = O(s-4). It follows from (37) and (35) that  @,a) - @c,t lc)+O(ei) ,  where 

I n  the case of a system for which h < h, only the first type of singularity will be 
encountered. However, when h > h, the second singularity is encountered first in the 
neighbourhood of the critical point where 8, > 0. The first type of singularity occurs 
subsequently when the reactant is finally consumed. 

It is convenient a t  this point to  demonstrate that  a uniformly valid solution can 
be constructed in the neighbourhood of the critical point which connects the solu- 
tions on the upper- and lower-sign branches of figures 3-5 and which provides the 
missing part of the H-solution in figure 8. For this purpose we employ (31) and the 
transformations 

which are suggested by the nature of the singularities discussed previously. Equation 
(37), which remains valid in the limit e+O,  7 fixed, because (35c-e) are appropriate 
limiting equations, can be used to show that 

C' 
f j  = I - $  

F = i),--~7, J ( 7 )  = B H ,  7 > 0, (43 a, b )  

Then (31), (35c-e), (43) and (44) can be combined to find the lowest-order approxi- 
mation to the equation for J ( 7 )  : 

The analogous matching condition is 

Equation (45) describes a balance between reactive heat addition and the compres- 
sibility effect represented by the non-homogeneous term. Convection is suppressed 
here to lowest order. The general solution written as 

J = J(0)  ~ - " ~ f  K ewu a-4 dq,  w = T-2 C '  (47) JOT 
satisfies (46) when the upper sign is used, without determining the integration 
constant J ( 0 )  that multiplies the homogeneous solution to (45). In  fact the 
exponential decay with respect to  7 implies that one would need a term that is 
exponentially small with respect to the parameter € 4 0  in order to carry out the 
matching for J ( 0 ) .  The most obvious source of such a term is the neglected transport 
terms in ( 3 1 ) .  Given the form of the conduction term in (31) it is apparent that the 
H-expansion would eventually have a term 

In the limit, p+pc this would give 

if ( 4 3 a )  was employed. Given thc condition in (32). the matching rcquircd by (436)  
shows that the first term in (47) is of a far larger magnitude than that in (48). It follows 
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FIQURE 9. J as a function of the temperature perturbation 7. The arrow 
points in the direction of increasing downstream distance. 

FIQURE 10 FIQURE 11  FIGURE 12 

FIQURE 10. Flow speed aa a function of temperature. 
FIQURE 11. Pressure difference as a function of temperature. 
FIQURE 12. M B  aa a function of temperature. 

that J(0) = 0. A qualitative description of J(T)  is given in figure 9, where the arrow 
points in the direction of flow. The first location J' = 0, on the upper-sign branch of 
(47), corresponds to a maximum in J and thus H as well. As r+O, J+O+ so that 
H-tO and x-+xi, meaning that the ignition delay distance has actually been reached. 
Subsequently the lower-sign branch is used to describe the function behaviour. There 
is a subsequent minimum to J, and thus H, followed by an asymptotic approach to 
zero like -~-i for T-+ 00. 

The J ( T ) -  solution provides the transition in the H-solution in figure 8 from the 
upper-sign branch (upper half-plane) to the lower-sign branch (lower half-plane) near c. This transitional process occurs over the lengthscale 

a small fraction of the thickness of the complete rapid-combustion zone, which may 
be found by combining (30) and (43). 

5.3. Supersonic initial conditions 
The deceleration of a supersonic flow by chemical heat-addition is described 
qualitatively in figures 10-12. Once again the upper-sign branch is used from the 
initial to the critical point. In contrast to the subsonic case, however, the latter can 
never be reached because the reactant is always consumed for 1 G M < M while 
M2, < 1. A study of the properties of (40) shows that 1 < p($ = 0) < !&. When 
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FIGURE 13. Reactant consumption as a function of temperature. 

h = h,, the value of the temperature at which @ = 0 is maximized is p,,, implying 
that the local Mach number is unity. Once again the Chapman-Jouguet condition 
is attained for a given value of M and hence h,,, when the lowest approximation to 
the reactant concentration vanishes. If, for a given M, h < h,, then the final Mach 
number will be supersonic. 

The reactant consumption with temperature variation is shown in figure 13. 
Curve (a) describes the process when 0 < h < h,,, while the case h = h,, is given 

When M > 1 the qualitative behaviour of the H-function in (35a) is given by the 
dashed line in figure 8 for 0 < h < hcJ. The singularity in the H-function when $ + O  
is like that in the subsonic example and need not be discussed again. 

by ( b ) .  

6. The transitional process 
The rapid-combustion process is characterized by significant changes in tempera- 

ture, pressure, speed and reactant concentration. When @ = O(e) ,  or @ = O(e2) for 
h = hcJ, and IH( = 0(1/~) the approximations used to derive the basic approxi- 
mations in (35) fail and one must find another solution which describes the sub- 
sequent transition toward the final equilibrium state. This transitional solution must 
be constructed separately for the situations in which H+ co when 2 < Xi and when 
H+- 00 for X > xi. 

6.1. The case H +  co 

When the initial speed is subsonic and 0 < h < h, or supersonic with 0 < h < h,, 
the results of 55 imply that the variables in the transitional solution can be written 

(49a,b) 
as (P ,$ ,  4) = ( ~ , $ o , 4 0 ) + e ( - & @ > q ,  @ = .g, 

where the zero subscript refers to values of the rapid combustion zone variables when 
the associated reactant concentration is zero. For example = i?l(@ = 0) as in (40). 
The negative sign is used with 8 because is approached from below. If (49) is used 
in (1) and the limit e+O,  6 fixed, is applied, then the lowest-order system is given by 
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where primes denote &derivatives and f = yM2.  These equations are once again 
devoid of any transport effects. The matching conditions for &+ 00)  can be obtained 
by relating the behaviour of H ( F + G )  and through (30)  and (49c). It follows that 

describes the &properties. In deriving (51)  one must account for the possible effects 
of higher-order terms in the asymptotic expansion for H ( F ;  E ) .  Similarly (49 b )  and 
(36)  can be used to show that 

where gl0 represents the constant limiting function form of the O(E) perturbation for 
g (e.g. 9 - Qo+eQ1+ ...) in the rapid-combustion zone. This behaviour can be 
rationalized by considering the higher-order analogue of (35 b ) .  

Equation (50)  can be reduced to  

= - ~ o ( ~ w - g e - ~ / + a ,  (53a)  

1 +f-- l+Yfti0 
hjj = E(Bm-8), E = Y 

2f4, - ( 1  +f) 

where Bw represents the asymptotic value of gfar downstream (E+-  00) .  An explicit 
evaluation would require calculating the entire first-order correction to the rapid- 
combustion process, which will not be carried out here. 

The formal solution to (53a)  can be written as 

which will satisfy the condition in (51)  if 

Most significantly (54)  shows that 

meaning that the asymptotic temperature-perturbation value - grn is approached 
exponentially fast. It follows from (53 b) that the reactant concentration ey"+O 
exponentially fast as 6 + - 00. 

The perturbation solutions for f l  and .ii can be found easily from (50b,d)  once # is 
known from (54). 

The transitional solution describes the relaxation of the system to a nearly 
equilibrium state in which the reactant concentration is becoming very small. In fact, 
if the related thermal-explosion theory is a guide (Kassoy 1977), there will be a 
succession of subsequent regions in which exponentially small amounts of fuel are. 
consumed. In these regions transport effects are once again of interest because they 
too are exponentially small with respect to the parameter E+O.  

The ultimate final state can of course be calculated from (7 ) .  
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6.2.  The case I€+- 00 

When 0 < M2 < l /y  and h, < h < h,, the H-function is large and negative when 
g + O .  This implies from (30)  that the singularity occurs beyond the location of the 
ignition delay Xi. It is convenient in this case to carry out the solution in terms of 
the independent variable and then use (30)  to find the spatial dependence. Given 
the nature of the singularity, the transition-zone variables can be defined by 

2 
e '  (a,@) = (ao,j3,)+e(s,p), 9 = eij, H = - (57a,b,c)  

T- = G+@. (58) 

where S, 9, ij and e are functions of the independent variable p given by 

The zero subscript is as defined in $6.1. These variables may be used in (31), the 
analogous species and momentum equations and (1 e )  to find the lowest-order 
approximate system 

hij -- - 
1 = - ( T  02L-E)+(y-1)M2iiop', 

GO - 
(Pi2 t- L') ,  (59b)  9' = -1 

!F = a0fp+(1+j3,f)S, z = 6,(l+j3,fl, ( 5 9 4  

6, 

p = -u, p ,  = 1 -Go, (594 
- A  

where primes denote derivatives with respect to p. The general solution has the form 

9 = - C  = a'T, a' = (1 -f)(l  -a(G- 1))i > 0, 

where c' in (60b) is an integration constant. I n  deriving (60c)  i t  has been assumed 
that 2 is not exponentially large as 5% 00. 

The solution in (60)  must be matched with the asymptotic form of the rapid- 
combustion-zone solutions when 5 b  % from above. This implies that  p+ co. For 
example the asymptotic form of the 2-function, obtained from ( ~ O C ) ,  is 

Then (57c)  and (58)  can be used to show that 

ii, !Q 
H(P+j io )  - --. 

T-T, 

The direct asymptotic estimate for H ,  found from ( 3 5 ) ,  (36)  and the lower-sign form 
of ( 3 7 ) ,  is identical, thus verifying the previous assumption on the t-behaviour used 
to  find (60c) .  In a similar manner the p - ,  G- and $-solutions can be matched. It should 
be noted that c' cannot be found without calculating the O ( E )  correction to 3 in the 
rapid-combustion zone and carrying out the appropriate higher-order matching. 
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Nevertheless (60b)  shows that when p = e/6 the O(s) fuel concentration defined in 
(57b)  vanishes and from (58) shows that p i s  within an O(B)  value from !& When # + O  
(60c)  can be used to show that 

- L " ( ~ + o )  - do ln(l/g), 

which is logarithmically singular. This result can be combined with (30)  and (57c)  

which demonstrates that as the fuel is consumed we continue to move downstream 
away from Xi (which occurred when the temperature was close to e). 

The Chapman-Jouguet case h = hc, must be treated separately because g = O ( 8 )  
when the rapid-combustion-zone analysis fails. However, the approach is similar to 
that just concluded. Most notably (57 b) must be replaced by 

g = syj ,  (61 a )  

and ( Q , P )  - (Q1,Pl)+dC2,252)+ (61b)  

must be used to fhd  O(s2)  corrections to (a,@) corresponding to the O(s2) fuel- 
concentration field. Then, proceeding as before, the solutions are found to be 

where 48 , = T, , M P 2  and 0 is an integration constant. These solutions can be shown 
to match with those from the rapid-combustion zone when p-+oo. Here again G 
cannot be evaluated formally without a higher-order analysis of the rapid-combustion 
zone. As g + O ,  p will approach an O(1)  value, implying that as the O(e2)  fuel is 
consumed that temperature is within O(E) of T,,. Once again -2 will have a 
logarithmic singularity for g + O ,  so that downstream motion is preserved in the 
spatial transformation. 

The supersonic Chapman-Jouguet transition-zone solution is quite similar to that 
completed above for the subsonic flow. In  the interest of brevity, and because the 
solution lacks any novelty, i t  will not be discussed further. 

7. Conclusions 
A mathematical model has been developed for a one-dimensional steady high-speed 

deflagration when a unimolecular decomposition reaction of the Arrhenius type 
determines the rate of heat addition. The flow evolves from a non-equilibrium origin 
which represents the exit of an experimental apparatus. This burner configuration 
permits one to work with a well-posed mathematical system when the kinetics are 
described in terms of the ordinary Arrhenius rate law. The reactive compressible flow 
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reaction 

O ( X , . ~ X P [ - ~ ( ~ - ~ / O I  
Ignition 

I O(;x.) I -  
Initiation * 
OLY,) 

I * 

is studied for arbitrary values of the Lewis and Prandtl numbers, for general 
variations of viscosity, conductivity and diffusivity and for a temperature-dependent 
specific heat C,. A complete solution is obtained in the limit of high activation energy 
when the shortest possible characteristic reaction time is large with respect to the 
typical time interval between molecular collisions. 

Reaction initiation occurs adjacent to the origin in a region scaled in extent by 
a modest multiple of the mean free path of the gas. A balance of weak chemical 
heat-addition and transport effects produce exponentially small, but finite, gradients 
which can adjust to a wide range of input Mach numbers M .  In a subsequent region 
there is a fundamental balance of convection, reaction and compressibility which 
leads to a thermal explosion-like ignition process at the dimensional location 

€( 1 - M2) 
(1-yM2)h 

2. = [ulB-'el'"] 

when M2 < y-' or M2 > 1. In  the former case the result is identical with that found 
by Erpenbeck (1963) in a study of a subsonic reaction zone downstream of a shock. 
The term in square brackets represents the distance travelled by a fluid particle 
moving at the initial speed u1 during the characteristic initial-reaction time B-' ells. 

As x-+ xi - a more violent reaction process occurs on a lengthscale short compared 
with xi but large compared with xR in (3). Unlike the previous, induction zone, where 
O(B) changes in reactant concentration and temperature occur, there are O( 1) changes 
in each of the physical variables. The rapid-combustion process, determined by a 
balance of convection, reaction and compressibility, proceeds until the reactant has 
nearly vanished. Variations in the temperature and speed with distance are determined 
by the strong interaction between heat addition and compressibility. The latter effect 
tends to limit the temperature rise in the subsonic case because thermal energy is 
readily converted to kinetic energy. Since transport properties are of negligible 
importance in this zone, the basic conservation equations for mass and momentum 
and the state equation reduce formally to those which describe the variations from 
one state of local mechanical and thermal equilibrium to another in a one-dimensional 
compressible flow with heat addition (Williams 1965). However, the energy and 
reactant-species conservation equations contain Arrhenius kinetic laws which deter- 
mine the nature of the distributed heat release in the rapid-combustion zone. Thus 
local states of chemicul equilibrium (zero reaction rates) do not exist. 

The solutions imply that subsonic deflagrations will develop downstream of the 
initial point for a wide range of downstream pressures, each of which corresponds to 
exponentially small initial strain rate and temperature gradient. In contrast, a purely 
supersonic deflagration can exist for a range of downstream pressures only if the 

FIGURE 14. The major zone structure, where ,yR is given in (3) and xi in (29). 
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initial gradients take on a set of very specific values. Such a process would be unlikely 
in practice because the gradient control would be impossible. 

The high-speed deflagration described here is generally equivalent to the reaction 
behind a planar shock in the idealized detonation-wave model. It is well known that 
the interaction between the shock wave and exothermic processes in the reaction zone 
lead to a basic flow instability which destroys the one-dimensionality of an initially 
planar wave (Erpenbeck 1970). The stability properties of the reaction zone will be 
a profitable area of study in the future. 

When the input Mach number M in the burner model is sufficiently large, the flame 
behaves like a convecting thermal explosion (Clarke 1983~) .  Gradients a t  the burner 
are exponentially small with respect to the high-activation-energy parameter limit. 
They have only the most negligible effect on the global properties of the flame. 
However, the finiteness of the gradients permits the system to adjust to a wide range 
of M-values. 

The theory of doubly infinite low-speed transport-property-dominated flames 
(Buckmaster & Ludford 1982) predicts a unique propagation speed when the up- and 
downstream states are in perfect equilibrium. If the unburned-gas state admits very 
small but finite gradients, then Johnson (1963) has demonstrated that the uniqueness 
of the flame speed is lost. Similarly, for low-speed burner-attached flames, finite 
gradients at  the origin permit the system to adjust to a wide range of input mass-flow 
rates. In effect, the flame-propagation speed can take a wide range of values. 

The doubly infinite field models of high-speed flames given by Kapila et al. (1983) 
and Stewart & Ludford (1983) predict unique flame speeds as a function of an ignition 
temperature, thought of as a material property of the reactant, at which the upstream 
chemical reaction is suddenly initiated. Although the concept of an ignition 
temperature was suggested by von KBrmBn & Millan (1953), there is no evidence in 
the literature to suggest that it can be considered to be a material property, 
independent of an apparatus. In this respect i t  is our opinion that the ignition- 
temperature concept is not really helpful in developing a completely defined model 
of a flame. Further, it is our belief that the ‘finiteness’ of any real combustion 
experiment must be accounted for in a physically viable mathematical model of the 
system. This requirement will preclude the possibility of perfectly-equilibrium end 
states. The formulation of the present model emphasizes that, so long as the tiniest 
finite gradients are permitted at a specific location upstream of the flame, a normal 
Arrhenius kinetic model can be used to describe the spatial evolution of a reaction 
from any chosen initial temperature. In  our view these are appealing physical 
attributes. 

Finally, it should be mentioned that the reaction model employed in the analysis 
provided the least complex equation system with distributed heat release. An 
extension of the study to include bimolecular initiation reactions, a model of chain 
branching, a termination reaction and an equilibrium dissociation-recombination 
step is desirable, although algebraically complicated (Birkan & Kassoy 1983). 
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